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Abstract
Crack patterns in desiccating clay suspensions are drastically altered by the addition of
polymers. In this paper we report a systematic study of the effect of varying the composition of
a clay–polymer composite on the formation of crack patterns. Experiments as well as computer
simulations have been done. Details of the morphology and fractal dimension of the
experimental patterns are observed and the simulation is done on a two-dimensional spring
network model. We find a transition from a completely fragmented fractal pattern at high clay
content to a continuous film at about 50% clay content. The results of the simulation are in
good qualitative agreement with the experiments. The study is expected to be of importance for
clay–polymer composites. These can be designed to give improved mechanical and electrical
properties for practical applications.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

When a suspension of laponite in methanol is left to dry in a
Petri dish, it breaks up into fragments separated by a fractal
network of hierarchical cracks [1]. On the other hand, when
polyethylene oxide is similarly treated, it forms a continuous
uniform film, which has a ductile and plastic nature [2].
It deforms without breaking when subjected to a moderate
tensile stress. This observation leads us to expect interesting
results when the clay and polymer are mixed together in
different proportions and allowed to desiccate. Polymer–clay
composites are becoming an important class of materials for
practical applications, since they allow tailoring of different
physical properties [3, 4]. The objective of this work is to study
the formation of desiccation cracks in clay–polymer mixtures
through experiments and computer simulations.

2. Experiments

We use the synthetic clay laponite (RD) from Rockwood as
the clay component. The polymer is poly(ethylene oxide),

PEO (BDH, UK), of molecular weight 6 × 105. 2 g of solute
consisting of a fraction Pr of laponite and 1 − Pr of PEO is
mixed with 50 ml of methanol. It is stirred at room temperature
for 30 min in a magnetic stirrer. The suspension is poured into
a polypropylene Petri dish of 9.5 cm diameter and allowed to
dry. The samples are photographed and the images analyzed
using Image Pro Plus software during drying. Sometimes a
pinch of dye is added for clarity. The samples are about 0.2–
0.5 mm thick, but in the present study we do not concentrate
on the effect of varying sample thickness.

2.1. Crack morphology

Figure 1 shows the appearance of the samples for different
Pr values after desiccation. For clay fractions around 0.5 and
lower, a continuous film is formed, which can be removed from
the Petri dish. The film is about 250 μm thick. As seen in
the photograph, the film may have many cracks, depending on
the composition, but these cracks are not interconnected, so
the film does not break up into disjoint pieces. The pure clay
forms a very characteristic hierarchical fractal pattern, which
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Figure 1. This figure shows crack patterns formed in dried suspensions of clay (laponite) with different fractions of PEO added. In the upper
two figures the cracks appear dark and in the lower two the cracks are shown in white. For the 50% clay sample, a continuous film which
detaches from the substrate has formed. Many cracks are visible in the continuous film, but they are not interconnected. The side of the three
square patterns shown is 6.5 cm.

is well studied and documented [5–8]. In this case cracks are
interconnected, forming a network. The cracks have a broad
distribution of widths, which separate the solid pieces termed
‘peds’. As the polymer is added, the straight outlines of the
peds start to get jagged and the broad size distribution of large
peds (figure 2) changes drastically (figure 3) as shown in the
histograms. The average area of the peds is 400 pixels for pure
clay, it falls to 226 for Pr = 0.9 and is only 90 for Pr = 0.8.

2.2. Crack area

We photographed the crack patterns at certain time intervals
during drying. This was done for different compositions. The
photographs are grayscaled and the area covered by cracks
is measured. Figure 4 shows the area covered by cracks
as a function of time for several different clay fractions.
For clay fractions 100% and 90% the area increases linearly
with time. For lower clay fractions the area increases non-
linearly with time and the final crack area is higher than for
samples containing more clay. For clay percentages near 50%
a continuous film forms, which can be removed from the
substrate. We do not measure the crack area for clay content
lower than 50%.

2.3. Fractal dimension

A feature of the pattern morphology which is very apparent
from figure 1 is the change in the appearance of the ped outline.

Figure 2. Histogram showing the size distribution of the peds for the
pure clay sample. The average area of the peds is 400 pixels. The
number of peds of size Sz in pixels is plotted against Sz.

For pure clay (Pr = 1), the ped edges look smooth and nearly
straight. As soon as a small amount of polymer (Pr = 0.9)
is introduced, the edges become jagged. The most appropriate
way to quantify this feature is through the fractal dimension
of the interface. Rather than calculating the fractal dimension
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Figure 3. Histograms for the ped size distribution for 90% and 80%
clay (inset) samples. For 80% and lower clay fractions, the
distribution narrows down to a very large number of peds of very
small size, until 50% is reached. Below 50% a continuous film
forms.

Figure 4. The area covered by cracks as a function of time for
different clay–polymer compositions. The final crack area shows an
initial decrease at Pr = 0.9, but then increases significantly before
the continuous film appears. The nature of the time variation also
changes from linear to non-linear. However, as this is a highly
stochastic process, many more such observations are required to get a
true picture.

of each ped individually, we determine the fractal dimension
from the area–perimeter scaling of the whole pattern, which is
easily done using Image Pro plus. The log–log scatter plot of
the perimeter of each object (here a ped) against its area can be
fitted with a straight line, of slope df/2, where df is the interface
fractal dimension. This procedure is well known [9, 10] and
gives the average df for the whole pattern. A perfectly smooth
interface should have df = 1, whereas for self-similar wiggly
interfaces, 1 < df < 2.

Figures 5 and 6 show the area–perimeter plots for Pr =
1.0 and Pr = 0.5, respectively. Values of df from the graphs
are obtained as 1.14 and 1.64 respectively, clearly illustrating

Figure 5. Area–perimeter scaling for peds of a pure clay sample.
The line is a power law fit, which gives a df = 1.18. The smallest
peds which do not show the scaling have been omitted from the fit.

Figure 6. Area–perimeter scaling for peds of a Pr = 0.5 sample.
The line is a power law fit, which gives df = 1.64. The smallest peds
which do not show the scaling have been omitted from the fit.

the effect of disorder as polymer is introduced into the clay.
Values of df for other samples show the same trend. The
fractal dimension for pure clay samples lies between 1 and
1.2, while it goes up to about 1.8 with addition of the polymer.
This calculation has been done for samples where there is no
continuous film, i.e. for Pr � 0.5.

3. The simulation algorithm

In simulating the crack formation in the polymer–clay system,
we utilize our code for a two-dimensional spring network,
which was developed in [11]. It is modified suitably for the
present problem. The top view of the clay–polymer system
is represented by a square lattice, with the nodes representing
either clay or polymer particles. A fraction Pr of the nodes are
randomly assigned to be clay (C); the remainder are polymer
(P). Bonds between the nodes are assumed to be springs, which
are Hookean up to a certain threshold strain, beyond which they
break. We have therefore three kinds of springs, those joining
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P–P, C–C and P–C nodes. Each type of spring is characterized
by two parameters, a spring constant and a breaking threshold,
so there are six spring parameters in all.

Unbalanced forces start to act on the nodes as the system
begins to desiccate. A molecular dynamics (MD) approach has
been used to calculate the evolution of the system. Desiccation
is implemented through a reduction in the natural length of the
springs, introducing strain. The four neighboring springs cause
a net force to act on each node. We restrict the movement of the
boundary layer springs, allowing motion only along the length
of the boundary, but not normal to it.

An iterative scheme is utilized, which describes the
successive decrease in natural length of each spring with time.
The same rule was used earlier by Sadhukhan et al [12].

dτ+1 = dτ (1 − b/r τ ) (1)

where dτ+1 and dτ represent respectively the natural lengths
between two nodes in the (τ + 1)th and τ th time steps, b
is a constant and r is a parameter which controls the rate of
decrease in the natural length from one time step to the next
higher time step. This empirical rule causes the shrinking rate
to decrease gradually with time, which is realistic. The power
law anticipates the self-similarity observed in the process [13].

In [11], equation (1) is integrated and given a form more
amenable to the present MD formulation. Equation (1) can be
written as

dτ = exp(br−τ / ln r). (2)

In the present paper we use the same form.
dτ is normalized to d0 at n = 0. b has been assigned the

value 0.05 and r = 1.1 in this paper. When τ is large enough,
the natural lengths saturate to a minimum value dmin and there
is hardly any subsequent change. The parameters b and r are
chosen such that finally dmin saturates to a value of about 60–
70% of d0.

The molecular dynamics proceeds as follows. As the
system dries, each node is acted on by a net force determined
by shrinkage of the four adjacent nearest neighbor springs.
Even for the pure clay system, unbalanced forces arise due
to the boundary condition imposed at the four sides. For
Pr �= 1 additional asymmetric forces arise due to the difference
in parameters for the P–P, C–C and P–C type springs. So
each node takes up a new position after time δt , determined
by vδt . This procedure is equivalent to a simplified form of
Verlet’s algorithm [11]. Here v is the instantaneous velocity of
a particle calculated from the net force (i.e. the acceleration).

We have introduced an additional parameter n, to
incorporate the comparative effect of two different timescales.
One is the drying rate and the other the rate of relaxation of the
system, allowing redistribution of strain in the spring network.
We allow n MD steps before a spring shrinks to a new reduced
length. So n steps are included in the drying time step τ .

n = 1 implies fastest drying, with the relaxation rate equal
to the drying rate. As we shall see, the parameter n has a non-
trivial role in the crack formation dynamics.

We find that the choice of δt = 0.05 gives realistic results.
After every δt , the maximum force on a particle is noted. We
then check whether the strain on any spring has exceeded the

threshold, in which case it breaks. If a number of springs cross
the threshold simultaneously, the one with the highest strain
breaks. If again, there are more than one springs with the same
highest strain, one is randomly chosen to break. This situation
arises sometimes at the first breaking, but it rarely arises later.
The next drying occurs after n such intervals.

The molecular dynamics runs until dmin is reached and
there is no further desiccation.

4. Simulation results

We have simulated crack formation on a square network with
sides 50 units long. The fraction of clay Pr has been varied
from 0 to 1 in steps of 0.1. The parameters are designated as
follows: S(i, j) represents the spring constant of the spring
connecting sites of type i and type j . Here i and j can be
either P or C. The breaking threshold Bth(i, j) is the maximum
strain that the spring can withstand. If the threshold strain
is exceeded, the spring breaks and the gap becomes part of
a crack. The parameter n, representing the relaxation time
allowed before the next drying step, has been varied from 1 to
10 in the present case. The parameters b = 0.05 and r = 1.1
have not been varied in this paper.

The values of the seven parameters affect the crack
morphology very strongly. We report results for several
parameter sets, for different compositions (i.e. Pr). The
breaking threshold Bth(P, P) has been permanently fixed at a
very large arbitrary value, so we assume that the polymer–
polymer bonds never break. We present results for some
specific combinations of parameters in order to identify the
effect of each.

4.1. The effect of Pr variation with n = 10, and different S
and Bth

We start with the spring parameters S(C, C) = S(P, C) = 1.0
and S(P, P) = 0.1. The thresholds are taken as Bth(P, C) =
0.2 and Bth(C, C) = 0.0001 and n = 10. So with this set of
parameters, polymer–polymer bonds are less stiff and deform
more than polymer–clay and clay–clay ones. On the other
hand, the clay–clay bond breaks more easily than the clay–
polymer one. The drying rate is slower than the relaxation rate.
These parameters seem physically reasonable. We look at the
change in the pattern as Pr varies.

The set of figures 7 shows the successive time
development of cracks in the pure clay sample (Pr = 1).
The results look very realistic when compared with the
experimental crack patterns for pure laponite. The hierarchical
network formed by older cracks widens as new finer cracks
open up. This mimics the time development in the experiments
quite well. As we decrease Pr, introduction of polymer
introduces disorder in the pattern. This is shown in two sets
of figures 8 and 9 with Pr = 0.7 and 0.5 respectively.

As long as 0.5 < Pr < 1.0, the final pattern consists
of fragmented irregular pieces, but at Pr = 0.5, the final
pattern has a continuous network of unbroken bonds spanning
the system. This is reminiscent of a percolation transition on a
square lattice when bonds are broken randomly [14].
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Figure 7. Patterns (a)–(f) show successive stages in the simulation of the crack network in the pure clay sample (Pr = 1). Details of the
parameters are given in the text.

Figure 8. Patterns (a)–(f) show successive stages in the simulation of the crack network in the sample with 70% clay and 30% polymer
(Pr = 0.7). The final pattern is still fragmented. Details of the parameters are given in the text.

4.2. The effect of varying n with the other parameters the
same as in section 4.1

Now let us see the effect of changing n. Figure 10 compares
patterns formed with n = 1 and 10 for three different values of
Pr. The upper set with n = 1 has a larger number of broken
bonds than the corresponding n = 10 set below, as expected.
An interesting result is obtained on plotting the number of
broken bonds as a function of (1 − Pr) for different values of n
(see figure 11). As the clay fraction increases from 0 to 1, for
n = 1, there is a monotonic increase in the number of broken
bonds in the final desiccated pattern, but for higher n, there is a

peak at Pr ∼ 0.7. The peak implies that for this combination of
parameters, the effective breaking probability for P–C bonds is
larger than that for C–C bonds. According to our assumption,
P–P bonds never break.

4.3. Equal breaking thresholds Bth; only the spring constants
S are different

The parameters taken here are S(P, P) = 0.2, S(C, C) =
S(P, C) = 1, Bth(P, C) = Bth(C, C) = 0.0001 and n = 10
(see figure 12). The P–P bonds always have an infinite breaking
threshold. We see that even with equal breaking thresholds,
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Figure 9. Patterns (a)–(f) show successive stages in the simulation of the crack network in the sample with 50% clay and 50% polymer
(Pr = 0.5). The final pattern now has a continuous network of unbroken bonds spanning the sample.

Figure 10. The upper set of figures shows the crack development with n = 1, and the lower that with n = 10, for three different
compositions. Details of the parameters are given in the text.

the difference in spring parameters gives non-trivial results.
Patterns for low Pr are also shown here. For Pr = 0.1,
i.e. a predominantly polymer film with 10% clay, we have
a continuous polymer film with some holes, as observed
in the experiment. The holes in the simulated pattern are
rather rounded compared to the experimental sample ones (see
figure 1). The transition to the fragmented film occurs here
between Pr = 0.4 and 0.5.

5. Discussion

Let us look at finer details of some of the features observed
experimentally. It is rather surprising that as Pr is increased,

the average ped size decreases and the area covered by
the cracks increases (figure 4) before the transition to the
continuous film. The simulation, however, shows a somewhat
similar behavior, since for n � 5 the number of broken bonds
becomes higher for Pr = 0.7 than for Pr = 1.0. For Pr lower
than 0.7 the film is continuous. This shows that n larger than 1
represents a physically realistic situation, i.e. in our experiment
drying is slower than relaxation.

The system size that we have taken for the simulation is
not large enough for calculating the fractal dimension of the
peds, but the irregular appearance of the ped outline looks
realistic and similar to experimental observations. On the
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Figure 11. The number of bonds finally broken versus Pr for n = 1,
5 and 10 is shown. For n = 5 and 10, there is a peak at Pr = 0.7,
whereas for n = 1 the increase is monotonic, with a tendency to
saturate after Pr = 0.7. The regime where a continuous spanning
network is present is indicated by the shaded rectangle on the left.

whole, the simulation results presented are in good qualitative
agreement with the experiments discussed in section 1. This
shows that the physical basis of the algorithm is realistic. It will
be useful to calculate actual measurable material properties,
such as Young’s modulus and the hardness from the spring
parameters as was done by [16].

A more detailed simulation study with systematic
variation of all seven parameters is in progress, but in this
preliminary report we can already show the striking effect of
varying the relative drying and relaxation rates, as well as the
spring parameters. There are other experimental conditions
which have been found to affect the crack patterns in clay
significantly, such as the film thickness and the nature of the
substrate.

It is well known that the average ped size scales with
thickness [17] and the cumulative crack area at different
resolutions can be collapsed onto a master curve on scaling
by thickness [13]. It will be interesting to see whether these
features are present for clay–polymer mixtures as well. For
pure clay samples it was found that after excess water has
evaporated from the top of the suspension, the drying rate
changes from around 0.01 to 0.002 g s−1 [13]. The changeover
indicates a transition in the nature of the cracks. Such studies
are yet to be done for the polymer–clay mixtures.

The effect of the substrate is also significant. Previous
work comparing cracks on polypropylene (PP) and glass
substrates [12] showed that on glass cracks are much wider but
less in number than those on PP. This is probably a combined
effect of the hydrophobicity and roughness of the surface.
Crack patterns in polymer–clay composites are likely to show a
richer dependence on the substrate characteristics, particularly
as the substrate–film interactions may be quite different for the
two constituents.

So there are several new avenues to explore as
regards polymer–clay composites which are of great interest

Figure 12. Crack simulation with different spring constants but the
same breaking threshold. The parameters taken here are
S(P, P) = 0.2, S(C, C) = S(P, C) = 1, Bth(P, C) = Bth(C, C) =
0.0001 and n = 10. The P–P bonds always have an infinite breaking
threshold.

currently [3, 4]. Polymers have become indispensable
as versatile materials in numerous applications for several
decades. It is found that mechanical properties of industrially
applied polymers improve on addition of clay. Polymer
electrolytes with clay inclusion [15] have better electrical
properties. The present study adds a new set of observations
to this fast developing field of clay–polymer composites.

The study of desiccation cracks is now a rich topic with
many excellent experimental [18, 8, 5, 19, 20] as well as
simulation [7, 16, 6, 21, 11] papers reported. Crack studies
on disordered materials and composites are less reported. The
work of Urabe et al [16] is closely related to our work. They
study a disordered network with hard and soft springs on a
triangular lattice. They also report a non-monotonic behavior
of the number of broken springs on composition variation. This
is attributed to the tortuous paths taken by the propagating
crack in the disordered lattice. Spring network models with
breaking and slipping of springs has been reported also by [7].

Other fascinating features related to crack formation
are three-dimensional columnar joints [22] and memory
effects [18]. Electric fields are also found to affect crack
formation [23].

6. Conclusions

To conclude, we have presented a study of desiccation crack
formation in clay–polymer composites, through experiments
and simulation. Experimentally observed changes in the
morphology of the crack network are reproduced quite well
by a simple two-dimensional spring network model. We shall

7



J. Phys.: Condens. Matter 22 (2010) 015402 S Nag et al

try to correlate the model spring parameters of the constituents
with measurable properties such as the elastic constants and see
whether it is possible to predict properties of the composite.
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